# MAYHEW PERFORMANCE CONSULT · DEVELOP · EXECUTE

## Battery Fleet Management Achieving Daily Production Presented by: Mike Mayhew

WSN Battery Electric Symposium



## Mayhew Performance

- Founded in 2020 (Mike/Nicole Mayhew)
- 50 Years Combined Experience in Mining and Health Care
- 4 Pillars to Mayhew Performance
  - Innovation & Technology
  - Operational Excellence
  - Heath & Safety, Health Care Nursing
  - Business Development & Marketing

www.mayhewperformance.com





## Kirkland Lake Gold Macassa Mine



#### **Quick Facts**

| Location        | Town of Kirkland Lake, 580 km north of<br>Toronto, Ontario   |
|-----------------|--------------------------------------------------------------|
| Mine Type       | Underground, shaft access                                    |
| 2019 Production | 241,297 ounces                                               |
| Deposit Type    | Orogenic greenstone hosted gold (Lode<br>Gold deposit)       |
| Process         | Carbon in Pulp (CIP)                                         |
| End Product     | Gold doré                                                    |
| Infrastructure  | #3 Shaft, 2,200 tpd capacity Macassa Mill<br>(ore and waste) |
| Commenced       | 2002 by Kirkland Lake Gold, producing                        |





## Advantages for Battery Equipment







# Fleet Management and Performance

## **Production at KLGold Macassa**



Similar performance compared to diesel equipment.





# Why Battery Technology At Macassa

- SMC (South Mine Complex) below 5000 ft depth is connected to old Macassa infrastructure
- Limited airflow is available through the old workings to surface and therefore through the mine. The new Shaft4 will help with ventilation in the years to come.
- Not enough airflow through the mine for the equivalent diesel equipment.
- Battery affords increased mobility relative to diesel equipment as the mine gets deeper.
- Haulage is in fresh air and could not be done exclusively with diesel trucks due to contaminants





## Case Study Z40 / MT2010







# Case Study Z40 / MT2010

## Haul Truck

- Time Study was done to gather battery use data from various battery trucks.
- Trucks haul up-ramp loaded and down-ramp empty.
- 40-ton trucks equipped with regenerative braking.
- The regenerative braking results in less power consumption, less heat generation, and less battery changes.





# Case Study Z40 / MT2010

### Haul Truck

- Energy Use of Equipment = Potential Energy + Energy Converted to Heat
- Potential Energy calculated based on mass and elevation difference
- Resultant Energy & Power calculated

|                | Z-40      |            | MT-2010   |            |
|----------------|-----------|------------|-----------|------------|
|                | Energy    | Avg. Power | Energy    | Avg. Power |
| Up-Ramp Time   | 16 min    |            | 18 min    |            |
| Battery Use    | 66.3 kWh  | 249 kW     | 40.8 kWh  | 136 kW     |
| Potential      | 45.9 kWh  | 172 kW     | 24.1 kWh  | 80.3 kW    |
| Resultant Heat | 20.4 kWh  | 77 kW      | 16.6 kWh  | 55 kW      |
| Down-Ramp Time | 14 min    |            | 32 min    |            |
| Battery Use    | -24.9 kWh | -107 kW    | -2.3 kWh  | -4 kW      |
| Potential      | -27.7 kWh | -119 kW    | -14.9 kWh | -28 kW     |
| Resultant Heat | 2.7 kWh   | 12 kW      | 13.7 kWh  | 25 kW      |





## Case Study Loaders



- Testing done to compare the temperature increase while mucking with a battery scoop versus with a diesel scoop
- Wide variability in temperature from one test to another in both battery and diese
- Performance and power a major difference Battery vs Diesel.

|                  | Temperature<br>Increase (°C) | Water Content<br>Change (g/kg) | Enthalpy<br>Increase (kW) |
|------------------|------------------------------|--------------------------------|---------------------------|
| Battery<br>Scoop | 0.8                          | 0.0                            | 7.3                       |
| Diesel Scoop     | 4.5                          | 1.6                            | 53.7                      |





# Lesson Learned in Operations

### Safety and Maintainability

Design electrical systems with arc flash safety in mind.

- Typical electrical worker PPE (coveralls, hard hat, boots, gloves, face shield, etc.) provides protection up to 8 cal/cm<sup>2</sup>.
- Incident energy over 8 cal/cm<sup>2</sup> typically results in workers wearing face shield with hoods, jackets, etc. which make performing tasks challenging.
- If equipment design does not consider the arc flash hazard, it may be very challenging to operate, or repair.

### Standard Arc Flash Design Principles Apply:

- 1. Lock out procedure.
- 2. Covers and barriers.
- 3. Physical separation.
- 4. Overcurrent protection.
- 5. Break system up into smaller and safer segments.
- 6. Avoid live work.









# Challenges with Battery Technology

While battery electric equipment offers significant benefits to an operation, the benefits are not without corresponding to the operating costs and challenges:

### **Capital Cost**

Machines are more expensive to purchase and require investment as it relates to training and maintenance.

### **Limited Product Range**

Machines are available in limited size classes from a limited number of manufacturers. However, that is growing and we are seeing growth of new product.

## **Operating Cost**

Battery cells require replacement (contributing to higher operating costs), components are relatively expensive and have less design history to ensure reliability.





## Market Outlook

### Increased Market Competition

OEMs (Epiroc, Caterpillar, Sandvik, Komatsu, Kovatera, MacLean and others) have started to develop battery equipment for underground mining applications. The increased competition will drive improvements and innovation. Battery Suppliers; Artisan, FVT Research, Stack Tronic.

### Mining Equipment will Benefit from the Automotive Industry

The Automotive EV market is growing rapidly and major OEMs are expanding their product offerings. This is expected to improve cost, reliability and choice of sub-components such as motors, inverters, controllers, battery chemistry.

### **Increased Performance**

With increased product competition, all key machine performance measures (safety, power, energy, reliability, cost, etc.) will move in positive directions.

## OEMs Gaining Experience and Moving to Increase Service Options

With the increased interest and adoption of EVs in mining, service companies are expected to be able to provide more complete service (repair, troubleshooting, parts, etc.)





## Next Steps

### Benchmarking

Working closely with industry such as OEMs, Battery Suppliers and Operations including mining consortiums such as the GMG, CIM, Colleges and Universities.

#### **Increased Performance**

With increased product competition, all key machine performance measures (safety, power, energy, reliability, cost, etc.) will move in positive directions.

### **Battery Management Systems & Integration**

The Automotive EV market is growing rapidly and major OEMs are expanding their product offerings. This is expected to improve cost, reliability and choice of sub-components such as motors, inverters, controllers, battery chemistry.

### Maintenance Planning & Training

Work closely with Operations, Maintenance and Training departments to ensure the BEV.

### **OEMs Gaining Experience and Moving to Increase Service Options**

With the increased interest and adoption of EVs in mining, service companies are expected to be able to provide more complete service (repair, troubleshooting, parts, etc.)





## Questions?



www.mayhewperformance.com

**Thank You**