

Radon Management Throughout the Life Cycle of an Underground Mine

ROBERT STOYANOFF, MBA CCHEM CIH. SENIOR INDUSTRIAL HYGIENIST GOLDER ASSOCIATES LTD.

MINING HEALTH & SAFETY CONFERENCE APRIL 19, 2018 – SUDBURY, ON

Properties of Radon

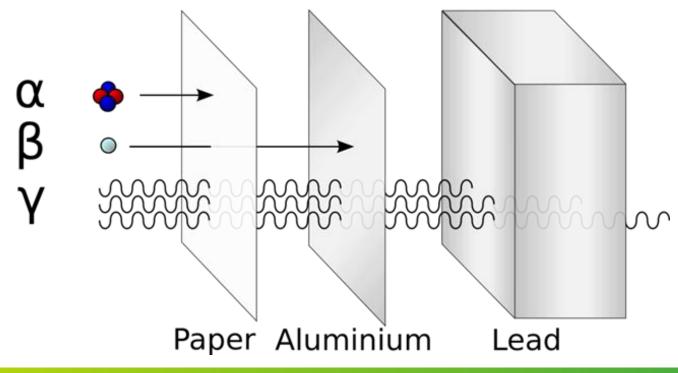
- Radon is a naturally occurring, ubiquitous gas produced through the radioactive decay of uranium
- Toxic gas; lung carcinogen
- A noble gas with atomic number 86 (Group VIIIA/18)
- Chemically inert; oxidation potential of zero
- Four naturally occurring isotopes; all of which are radioactive

Nuclear Chemistry 101

- Matter is comprised of atoms
- Atoms are comprised of a nucleus (containing protons and neutrons of equal mass) and orbiting electrons (no mass)
- Protons have a charge of +1; electrons have a charge of -1; neutrons have no charge
- Protons and electrons remain in balance; number of neutrons can vary
- Number of protons represents the atomic number; radon has an atomic number of 86
- Number of protons and neutrons represents the atomic mass
- Isotopes are the various configurations of atomic nuclei in combination with various numbers of isotopes

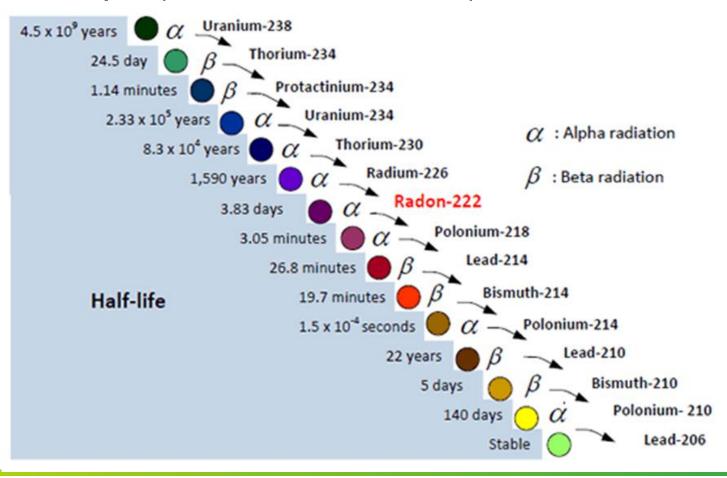
Nuclear Chemistry 101

- Example hydrogen has an atomic number of 1
- Three naturally occurring isotopes with corresponding atomic masses of 1, 2 and 3

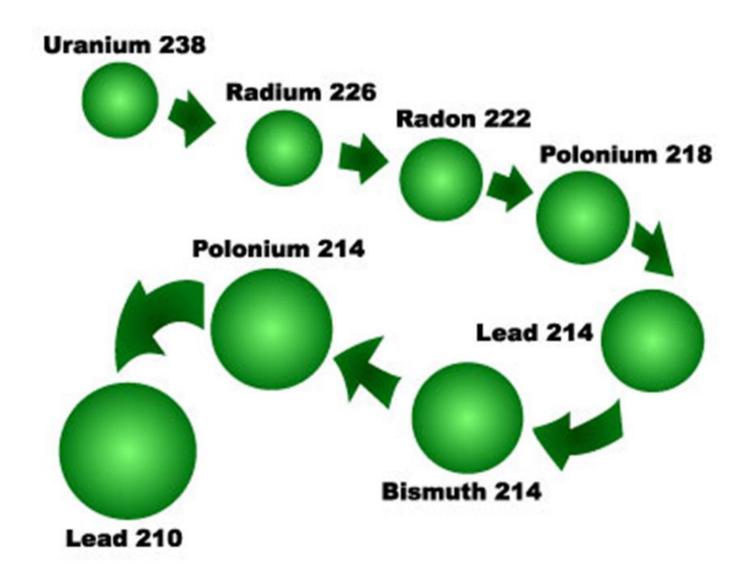


Nuclear Chemistry 101

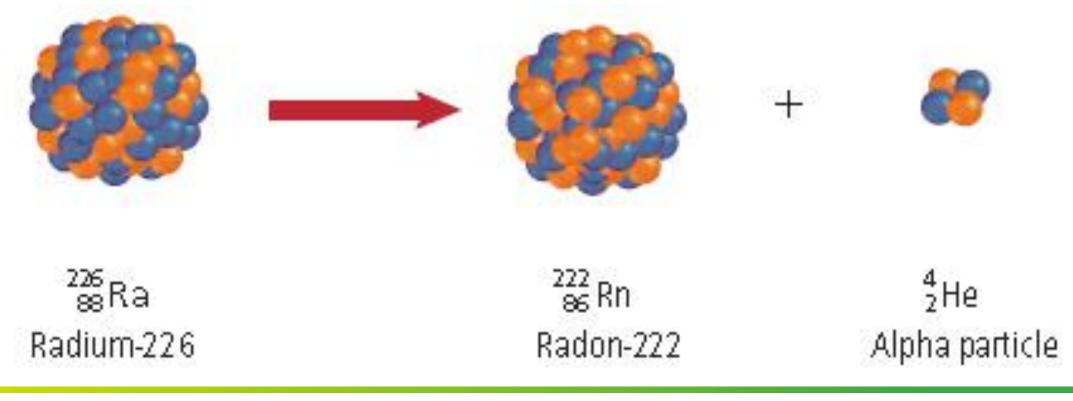
- As atomic mass increases, nuclei become more complex and they tend to build up more energy
- Some isotopes become predictably unstable (radioactive isotopes or radioisotopes) and start to emit subatomic particles (radioactive decay), resulting in a different isotope or atom ('daughters' or progeny)
- Emitted particles (radiation) have varying levels of energy
- The rate of decay of any given radioisotope is predictable and is measured in terms of half-life (duration required for the decay of 50% of the isotopes)
- Half-lives can vary from billions of years to milliseconds


Radiation

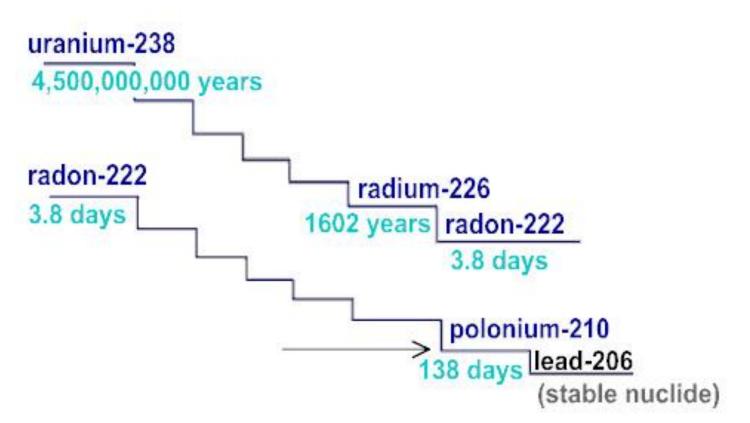
- Radiation from an isotope is in one of three forms:
 - alpha particle consists of two protons and two neutrons
 - beta particle an electron
 - gamma particle a high energy photon



 Radon formation is one step in the decay chain of naturally occurring uranium-238 isotope (99.2% abundance)

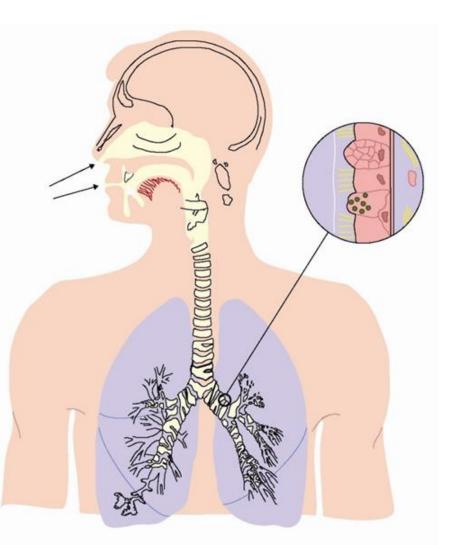


 The half-lives of the precursor isotopes in the uranium-238 decay chain from uranium to radium are predominantly measured in thousands to billions of years.



• When radium decays into radon, it produces an alpha particle

 The decay chain from radon-222 to polonium-210 is a series of short half-lives measured predominately in days, producing alpha and beta radiation


Radon Toxicity

- The relatively short half-life decay chain from radon-222 to polonium-210 produces alpha and beta particles, and a chemical phase change from gas to solid
- The solid progeny of radon (lead, polonium and bismuth) are attracted to dust particles and then inhaled as both free particles as well as adhered to dust particles

Radon Toxicity

 Particles deposit on the surface of the lung, which then undergo decay to produce alpha radiation at a rapid pace while in direct contact with lung tissue

Radon Toxicity

- Alpha radiation damages the genetic material of the cells lining the respiratory tract, leading to cancer
- Preferential deposit is in the bronchi, where successive transformations of the progeny produces several times the radiation produced by the initial decay of radon
- No associated acute symptomatology or irritancy
- Additional chronic health effects include emphysema, chronic pneumonia and pulmonary fibrosis
- Synergistic effect with cigarette smoke

Factors Affecting Radon Emission Levels Underground

- Concentration of uranium in ore body
- Geological formations
- Water flow and accumulation
- Barometric pressure and air flow
- Mine layout, complexity and evolution
- Blasting

Radon Exposure Assessment

- Radon and radon progeny levels underground can vary significantly over time and space
- Exposure assessment requirements under O. Reg. 854/90
- Requires 'off-the-shelf' capacity for real time measurements
- Grab sampling
 - Short term integrative particulate sampling followed by field scintillation counter assessment of progeny alpha radiation
 - CNSC Guide G-4 Measuring Airborne Radon Progeny at Uranium Mines and Mills

Controls

- Ventilation
 - Parallel versus series ventilation
 - Strategic use of auxiliary ventilation
 - Changing air delivery requirements
- Mining practices
 - Underground ore storage and handling
 - Location of ore transfer points relative to fresh air intakes/raises
 - Number of working faces

Respiratory Protection

- Air purifying respirators with P100 will provide protection from exposure to radon progeny but not radon gas
- Must consider periods of usage versus non-usage
- NIOSH respirator 'credit' formula

Respiratory Protection

NIOSH Credit for Respirator Use

$$P_t = 1/CF = t_w/APF + t_n$$

Where: P_t is total penetration of radon progeny APF is the assigned protection factor of the respirator CF is the respirator credit factor P_w penetration of radon progeny while wearing the respirator t_w is the fraction of time respirator is worn (0 to 1)

Key Summary Points

- Radon never sleeps
- Radon levels are in constant flux
- Radon levels are subject to numerous factors and change as the mine evolves
- Radon levels can increase dramatically as the underground mine moves toward closure

References

NIOSH (1987). A Recommended Standard for Occupational Exposures to Radon Progeny in Underground Mines.

CNSC (2003). Regulatory Guide G-4 – Measuring Airborne Radon Progeny at Uranium Mines and Mills (under revision).

Agency for Toxic Substances and Disease Registry (ASTDR, 2010). Case Studies in Environmental Medicine – Radon Toxicity.

RADON GAS

