

Fixed guards and safety distances

GUIDE RG-597

Fixed guards and safety distances

Research and writing

Laurent Giraud, Ph. D., junior engineer, researcher, Research Department, IRSST

Project management

Benoît Laflamme, engineer, prevention-inspection advisor, Direction de la prévention-inspection, CSST

Collaboration

Jean Desputeau, inspector, Direction régionale de l'Île-de-Montréal, CSST

Donald Duchesne, engineer, prevention-inspection consultant, Direction de la prévention-inspection, CSST Gilles Gagnon, engineer, prevention-inspection consultant, Direction de la prévention-inspection, CSST Pierre Guay, engineer, team leader in prevention-inspection, Direction régionale de la Yamaska, CSST Benoît Laflamme, engineer, prevention-inspection consultant, Direction de la prévention-inspection, CSST André Paillé, engineer, inspector, Direction régionale de Lanaudière, CSST Conrad Trudel, ergonomist, team leader in prevention-inspection, Direction régionale de Longueuil, CSST François Trudel, engineer, inspector, Direction régionale de l'Abitibi-Témiscamingue, CSST

Coordination

Catherine Bérubé, communications consultant, Direction des communications, CSST

Translation Helen Fleischauer

Graphic design and computer graphics Diane Urbain, Direction des communications, CSST Mario Saucier, Studio M. Saucier inc.

Illustrations Steve Bergeron

Original title:

Sécurité des machines - Prévention des phénomènes dangereux d'origine mécanique, protecteurs fixes et distances de sécurité

Acknowledgements

We want to thank the INRS for allowing us to use brochure ED 807 entitled *Sécurité des machines et des équipements de travail – Moyens de protection contre les risques mécaniques*; it served as the scientific basis for this document.

We also want to thank Réal Bourbonnière, engineer, for his contribution to writing the section on general risk-management principles based on IRSST guide R-405 entitled *Guide de conception des circuits de sécurité : introduction aux catégories de la norme ISO 13849-1:1999* (version corrigée).

© Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST) et Commission de la santé et de la sécurité du travail du Québec (CSST) Legal deposit – Bibliothèque et Archives nationales du Québec, 2009 ISBN 978-2-550 (French version) ISBN 978-2-89631-341-9

Preface

This guide mainly discusses the prevention of mechanical hazards. It describes methods for eliminating hazards at source or for reducing them, as well as ways to protect against them by using fixed guards.

The risk reduction or distance protection principles presented in the guide are general and are appropriate for the majority of machines. For some machines (for example, conveyors, metal presses, drills, rubber machines, etc.), before applying the generic solutions proposed in this guide, one should consult Québec regulations, standards relating to these machines (ISO, CSA, ANSI, etc.), or the technical guides published by the CSST (such as the guide *Sécurité des convoyeurs à courroie*), or by other organizations (ASP, INRS, IRSST, etc.), which can provide details on how to ensure the safety of these machines.

This guide is not an exhaustive collection of solutions, but it covers some of the currently known protection principles. For more information on machine safety, refer to the bibliography at the end of the document, or consult the Web site: www.centredoc.csst.qc.ca.

Table of contents

Introduction 9

Section 1 General information 11

- 1.1 Plan of the guide 11
- 1.2 Current laws and regulations 12
- 1.3 Definitions of the terms used in this guide 14

Section 2 General risk-management principles 19

2.1 Risk assessment 20

- 2.1.1 Risk analysis 20
- 2.1.2 Risk evaluation 23

2.2 Risk reduction 24

- 2.2.1 Hazard elimination and risk reduction 24
- 2.2.2 Guards and protective devices 24
- 2.2.3 Warnings, work methods and
 - personal protective equipment 25
- 2.2.4 Training and information 25
- 2.2.5 Verification of the final result **25**

Section 3 Guards

- 3.1 Fixed guards 28
- 3.2 Choice of type of guards 30

27

Section 4 Protection against crushing hazards 31

- 4.1 Protection using a minimum gap between the moving components 31
- 4.2 Protection by reducing the forces and energy levels of moving components 33

- 5.1 Access by reaching upwards 35
- 5.2 Access by reaching over a fixed distance guard 36
- 5.3 Access by reaching through an opening in a guard 38
 - 5.3.1 Openings in the guard **38**
 - 5.3.2 Tunnel guards 40
 - 5.3.3 Limiting movement **41**

5.4 Access by reaching under a guard 41

- 5.4.1 Lower and upper limbs 42
- 5.4.2 Lower limbs only 43
- 5.4.3 Limiting movement 43

Section 6 Protection of in-running nips 45

- 6.1 Creation of in-running nips 45
- 6.2 Delimiting the drawing-in zone 47

6.3 General information on the use of fixed nip guards 49

- 6.3.1 Protection of two cylinders in contact **50**
- 6.3.2 Protection of two cylinders not in contact 51
- 6.3.3 Protection of a cylinder close to a stationary component **51**
- 6.3.4 Protection of a cylinder in contact with a stationary flat surface **52**
- 6.3.5 Protection of a cylinder in contact with a belt or a flat moving component **52**

Appendix

Appendix A	Quick reference: Hazards 53	
Appendix B	Annex B of ISO 14120:2002 59	
Appendix C	Figure 1 of ISO 12100-2:2003 61	
Appendix D	Examples of use of Tables 5-1 and 5-2	63

References

67

Bibliography 69

Table of contents

List of figures

Figure I	Risk reduction hierarchy [1] 9
Figure 1	Possible location of the danger zone 11
Figure 2-1	Risk reduction management [1] 19
Figure 2-2	Elements of risk 21
Figure 2-3	Risk graph 21
Figure 3-1	Fixed enclosing guard 28
Figure 3-2	Fixed distance guard 29
Figure 3-3	Fixed nip guard 29
Figure 4-1	Minimum gap to avoid crushing hazards 31
Figure 4-2	Possible modifications to a worm drive to protect only the hand 32
Figure 4-3	Minimum gap between the robot and the guard (safety zone provided in the safety enclosure) 32
Figure 4-4	Protection by reducing the forces and energy levels of moving components 34
Figure 5-1	Possible location of the danger zone 35
Figure 5-2	Access by reaching upwards 35
Figure 5-3	Access by reaching over a guard 36
Figure 5-4	Access by reaching through a guard 38
Figure 5-5	Shape of openings in guards (slot, square, or circle) 38
Figure 5-6	Safety scale 40
Figure 5-7	Irregular-shaped opening 40
Figure 5-8	Tunnel guard 40
Figure 5-9	Safeguarding by distance for a worm drive 41
Figure 5-10	Plastic crusher equipped with chicanes 41
Figure 5-11	Access from below a guard 41
Figure 6-1	In-running nip created by two cylinders in contact 45
Figure 6-2	In-running nips created by two cylinders not in contact (identical, with a different coating or a different diameter) 45
Figure 6-3	In-running nip created by a cylinder close to a stationary object 46
Figure 6-4	In-running nip created by the winding of material 46
Figure 6-5	Use of a retractable cylinder at the juncture between two conveyor belts 46
Figure 6-6	Perimeter of the drawing-in zone 47
Figure 6-7	In-running nip created by two cylinders in contact 47
Figure 6-8	In-running nip created by a cylinder in contact with a belt 48
Figure 6-9	In-running nip created by two cylinders in contact with a sheet of material 48
Figure 6-10	In-running nip created by two cylinders not in contact 49
Figure 6-11	Nip guard – Spacing and geometry 49
Figure 6-12	Nip guard for two cylinders in contact 50
Figure 6-13	Prevention during the design step for two cylinders not in contact 51
Figure 6-14	Prevention during the design step for one cylinder and one stationary component 51

Figure 6-15	Nip guards for a cylinder in contact with a stationary flat surface 52
Figure 6-16	Nip guards for a cylinder in contact with a belt 52
Figure B	Chart for the selection of guards according to the number and location of hazards 59
Figure C	Guidelines to help make the choice of safeguards against hazards generated by moving parts 61
Figure D-1	Fixed distance guard – Example 1 64
Figure D-2	Fixed distance guard – Example 2 65

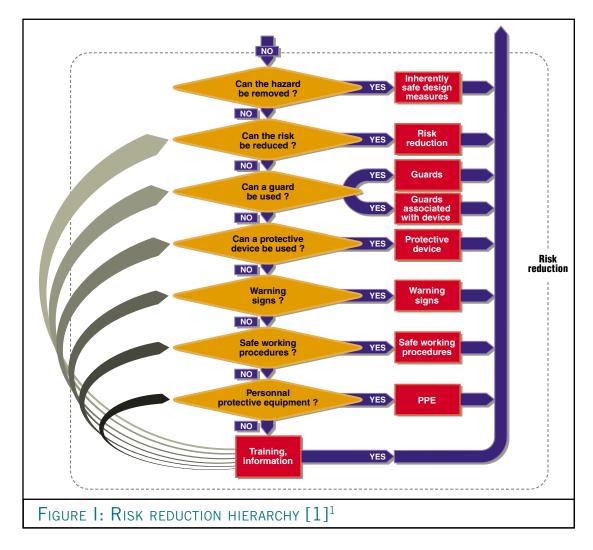

List of tables

Tableau 1	Current laws and regulations 12	
Tableau 4	Maximum values of force and energy 34	
Tableau 5-1	High risk – Reaching over a guard 37	
Tableau 5-2	Low risk – Reaching over a guard 37	
Tableau 5-3	Relationship between maximum opening and safety distance "sd"	39
Tableau 5-4	Reaching under a guard (lower limbs only) 42	

Introduction

When machine-related mechanical hazards (refer to the quick reference in Appendix A) cannot be eliminated through inherently safe design, they must then be reduced to an acceptable level, or the hazards that cause them must be isolated from the workers by guards that allow the minimum safety distances to be respected.

Most of the risks related to mechanical hazards can be reduced to acceptable forces or energy levels (see Table 4 in point 4.2) by applying a risk reduction strategy (see Figure 1). If this is impossible, the hazards must be isolated from people by guards that maintain a safety distance between the danger zone and the people, with the main result being to reduce access to the danger zone.

The main factors to be taken into consideration so that guards are effective are:

- the accessibility to the danger zone by the different parts of the human body;
- the anthropometric dimensions of the different parts of the human body;
- the dimensions of the danger zones as well as their position in space and in relation to the ground or the working platform.
- 1. In this guide, references are in brackets [] and the list of references is at the end of the document.

9